Future Optimization Recommendations¶
Based on the analysis of DocuSnap-Frontend's architecture and code quality, this page provides recommendations for future optimizations and improvements.
Modular Refactoring¶
1. Split Large Classes¶
Current Issue: Some classes (like ImageProcService
) are too large and have multiple responsibilities.
Recommendation: Refactor large classes into smaller, focused components:
-
Split
ImageProcService
into specialized services:class EdgeDetectionService { /* Edge detection algorithms */ } class PerspectiveCorrectionService { /* Perspective correction */ } class ImageFilterService { /* Image filters */ }
-
Benefits:
- Improved maintainability
- Better testability
- Clearer responsibilities
- Easier to extend with new features
2. Implement Dependency Injection Framework¶
Current Issue: Currently using simple manual dependency injection.
Recommendation: Adopt Dagger Hilt for dependency injection:
-
Configure Hilt in the application:
@HiltAndroidApp class DocuSnapApplication : Application()
-
Provide dependencies through modules:
@Module @InstallIn(SingletonComponent::class) object AppModule { @Provides @Singleton fun provideDocumentRepository( deviceDBService: DeviceDBService ): DocumentRepository = DocumentRepository(deviceDBService) // Other dependencies }
-
Inject dependencies into ViewModels and other components:
@HiltViewModel class DocumentViewModel @Inject constructor( private val repository: DocumentRepository ) : ViewModel()
-
Benefits:
- Simplified dependency management
- Better testability
- Consistent dependency provision
- Scope management (singleton, activity, etc.)
3. Feature Modularization¶
Current Issue: All features are in a single module.
Recommendation: Implement feature modules:
- Create separate modules for major features:
:feature:document
- Document processing:feature:form
- Form processing:feature:camera
- Camera and image capture-
:core:common
- Shared components and utilities -
Benefits:
- Faster build times
- Better separation of concerns
- Supports dynamic feature delivery
- Enables team to work in parallel
Error Handling Enhancement¶
1. Unified Error Handling Framework¶
Current Issue: Error handling strategies vary between modules.
Recommendation: Create a unified error handling framework:
-
Define a common Result type:
sealed class Result<out T> { data class Success<T>(val data: T) : Result<T>() data class Error(val error: AppError) : Result<Nothing>() object Loading : Result<Nothing>() } sealed class AppError { data class NetworkError(val code: Int, val message: String) : AppError() data class DatabaseError(val operation: String, val message: String) : AppError() data class ProcessingError(val stage: String, val message: String) : AppError() // Other error types }
-
Use consistently throughout the application:
suspend fun getDocument(id: String): Result<Document> { return try { val document = deviceDBService.getDocument(id)?.toDocument() ?: return Result.Error(AppError.DatabaseError("getDocument", "Document not found")) Result.Success(document) } catch (e: Exception) { Result.Error(AppError.DatabaseError("getDocument", e.message ?: "Unknown error")) } }
-
Benefits:
- Consistent error handling
- Better error reporting
- Improved user experience
- Easier debugging
2. Error Recovery Mechanisms¶
Current Issue: Limited error recovery options.
Recommendation: Implement robust error recovery:
-
Automatic retry for transient errors:
suspend fun <T> withRetry( times: Int = 3, initialDelay: Long = 100, maxDelay: Long = 1000, factor: Double = 2.0, block: suspend () -> T ): T { var currentDelay = initialDelay repeat(times - 1) { try { return block() } catch (e: Exception) { // Only retry certain exceptions if (e !is IOException && e !is HttpException) throw e } delay(currentDelay) currentDelay = (currentDelay * factor).toLong().coerceAtMost(maxDelay) } return block() // last attempt }
-
User-initiated recovery options:
- Provide retry buttons for failed operations
- Offer alternative workflows when primary path fails
-
Save draft state to prevent data loss
-
Benefits:
- Improved application resilience
- Better user experience
- Reduced support issues
- Higher success rate for operations
Testing Coverage¶
1. Increase Unit Test Coverage¶
Current Issue: Limited unit test coverage.
Recommendation: Implement comprehensive unit tests:
-
Test ViewModels with TestCoroutineDispatcher:
@RunWith(JUnit4::class) class DocumentViewModelTest { @get:Rule val instantTaskExecutorRule = InstantTaskExecutorRule() private val testDispatcher = TestCoroutineDispatcher() private val testScope = TestCoroutineScope(testDispatcher) private lateinit var repository: DocumentRepository private lateinit var viewModel: DocumentViewModel @Before fun setup() { Dispatchers.setMain(testDispatcher) repository = mockk() viewModel = DocumentViewModel(repository) } @After fun tearDown() { Dispatchers.resetMain() testScope.cleanupTestCoroutines() } @Test fun `loadDocuments should update state with documents from repository`() = testScope.runBlockingTest { // Arrange val documents = listOf(createTestDocument(), createTestDocument()) coEvery { repository.getAllDocuments() } returns documents // Act viewModel.loadDocuments() // Assert assertEquals(documents, viewModel.documents.value) assertEquals(false, viewModel.isLoading.value) } }
-
Test Repositories:
@RunWith(JUnit4::class) class DocumentRepositoryTest { private lateinit var deviceDBService: DeviceDBService private lateinit var repository: DocumentRepository @Before fun setup() { deviceDBService = mockk() repository = DocumentRepository(deviceDBService) } @Test fun `getAllDocuments should map JSON to Document objects`() = runBlockingTest { // Arrange val jsonArray = JSONArray() // Add test JSON objects coEvery { deviceDBService.getDocumentGallery() } returns jsonArray // Act val result = repository.getAllDocuments() // Assert assertEquals(jsonArray.length(), result.size) // Verify mapping logic } }
-
Benefits:
- Improved code reliability
- Regression prevention
- Better documentation of expected behavior
- Facilitates refactoring
2. UI Testing¶
Current Issue: Limited UI test coverage.
Recommendation: Implement UI tests with Compose testing:
-
Test Composables:
@RunWith(JUnit4::class) class DocumentScreenTest { @get:Rule val composeTestRule = createComposeRule() @Test fun documentScreenShowsLoadingIndicator() { // Arrange val viewModel = mockk<DocumentViewModel>() every { viewModel.isLoading } returns MutableStateFlow(true) every { viewModel.documents } returns MutableStateFlow(emptyList()) // Act composeTestRule.setContent { DocumentScreen(viewModel = viewModel) } // Assert composeTestRule.onNodeWithTag("loading_indicator").assertIsDisplayed() } @Test fun documentScreenShowsDocumentList() { // Arrange val documents = listOf(createTestDocument(), createTestDocument()) val viewModel = mockk<DocumentViewModel>() every { viewModel.isLoading } returns MutableStateFlow(false) every { viewModel.documents } returns MutableStateFlow(documents) // Act composeTestRule.setContent { DocumentScreen(viewModel = viewModel) } // Assert composeTestRule.onNodeWithTag("document_list").assertIsDisplayed() composeTestRule.onNodeWithText(documents[0].name).assertIsDisplayed() } }
-
Benefits:
- Ensures UI behaves as expected
- Catches regressions in UI behavior
- Validates user workflows
- Documents UI requirements
Performance Optimization¶
1. Image Processing Optimization¶
Current Issue: Image processing could be more efficient.
Recommendation: Optimize image processing algorithms:
-
Use NDK for performance-critical algorithms:
// In build.gradle.kts android { defaultConfig { externalNativeBuild { cmake { cppFlags += "-std=c++17" } } } externalNativeBuild { cmake { path = file("src/main/cpp/CMakeLists.txt") } } } // JNI interface external fun nativeDetectEdges(bitmap: Bitmap): Array<PointF>
-
Implement parallel processing for large images:
suspend fun processBitmapInParallel(bitmap: Bitmap): Bitmap = withContext(Dispatchers.Default) { val height = bitmap.height val width = bitmap.width val result = Bitmap.createBitmap(width, height, bitmap.config) // Split image into chunks for parallel processing val chunkSize = height / Runtime.getRuntime().availableProcessors() val chunks = (0 until height step chunkSize).map { y -> async { processChunk(bitmap, result, y, minOf(y + chunkSize, height)) } } // Wait for all chunks to complete chunks.awaitAll() return@withContext result }
-
Benefits:
- Faster processing times
- Reduced battery consumption
- Better user experience
- Support for larger images
2. Data Loading Optimization¶
Current Issue: Data loading could be more efficient.
Recommendation: Implement pagination and efficient data loading:
-
Add pagination to data loading:
@Dao interface DocumentDao { @Query("SELECT * FROM documents ORDER BY last_used DESC LIMIT :limit OFFSET :offset") fun getDocumentsPaged(limit: Int, offset: Int): Flow<List<DocumentEntity>> } // In Repository fun getPagedDocuments(page: Int, pageSize: Int = 20): Flow<List<Document>> { return documentDao.getDocumentsPaged(pageSize, page * pageSize) .map { entities -> entities.map { it.toDocument() } } }
-
Implement efficient data loading with Paging 3:
@Dao interface DocumentDao { @Query("SELECT * FROM documents ORDER BY last_used DESC") fun getDocumentsPagingSource(): PagingSource<Int, DocumentEntity> } // In Repository fun getDocumentsStream(): Flow<PagingData<Document>> { return Pager( config = PagingConfig( pageSize = 20, enablePlaceholders = true, maxSize = 100 ), pagingSourceFactory = { documentDao.getDocumentsPagingSource() } ).flow.map { pagingData -> pagingData.map { it.toDocument() } } }
-
Benefits:
- Reduced memory usage
- Faster initial loading
- Smoother scrolling experience
- Better handling of large datasets
CI/CD Implementation¶
1. Automated Build Pipeline¶
Current Issue: No automated build process.
Recommendation: Implement CI/CD pipeline with GitHub Actions:
-
Create workflow file:
name: Android CI on: push: branches: [ main ] pull_request: branches: [ main ] jobs: build: runs-on: ubuntu-latest steps: - uses: actions/checkout@v3 - name: Set up JDK uses: actions/setup-java@v3 with: java-version: '11' distribution: 'temurin' - name: Grant execute permission for gradlew run: chmod +x gradlew - name: Build with Gradle run: ./gradlew build - name: Run tests run: ./gradlew test - name: Build debug APK run: ./gradlew assembleDebug - name: Upload APK uses: actions/upload-artifact@v3 with: name: app-debug path: app/build/outputs/apk/debug/app-debug.apk
-
Benefits:
- Automated build verification
- Early detection of issues
- Consistent build environment
- Improved team productivity
2. Automated Testing¶
Current Issue: No automated testing in the build process.
Recommendation: Add automated testing to the CI pipeline:
-
Add UI tests to CI:
- name: Run instrumentation tests uses: reactivecircus/android-emulator-runner@v2 with: api-level: 29 script: ./gradlew connectedAndroidTest
-
Add code coverage reporting:
- name: Generate code coverage report run: ./gradlew jacocoTestReport - name: Upload coverage to Codecov uses: codecov/codecov-action@v3
-
Benefits:
- Ensures tests are run consistently
- Provides visibility into test coverage
- Catches regressions early
- Improves code quality
Monitoring and Analytics¶
1. Performance Monitoring¶
Current Issue: Limited visibility into app performance.
Recommendation: Implement performance monitoring:
-
Add Firebase Performance Monitoring:
// In Application class FirebasePerformance.getInstance().isPerformanceCollectionEnabled = true // Custom trace for important operations val trace = FirebasePerformance.getInstance().newTrace("image_processing") trace.start() // Perform operation trace.stop()
-
Monitor key metrics:
- Startup time
- Screen rendering time
- Network request latency
-
Image processing duration
-
Benefits:
- Identify performance bottlenecks
- Track performance over time
- Prioritize optimization efforts
- Improve user experience
2. Crash Reporting¶
Current Issue: Limited crash visibility.
Recommendation: Implement crash reporting:
-
Add Firebase Crashlytics:
// In Application class FirebaseCrashlytics.getInstance().setCrashlyticsCollectionEnabled(true) // Log non-fatal exceptions try { // Risky operation } catch (e: Exception) { FirebaseCrashlytics.getInstance().recordException(e) // Handle exception }
-
Add custom keys for debugging:
FirebaseCrashlytics.getInstance().setCustomKey("document_id", documentId) FirebaseCrashlytics.getInstance().setCustomKey("processing_stage", "edge_detection")
-
Benefits:
- Faster issue detection
- Better debugging information
- Prioritization of critical issues
- Improved application stability
These optimization recommendations provide a roadmap for future improvements to DocuSnap-Frontend, focusing on code quality, performance, testing, and development processes. Implementing these recommendations will enhance the application's maintainability, reliability, and user experience.